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The quantum Drude oscillator �QDO� model, which allows many-body polarization and dispersion to be
treated both on an equal footing and beyond the dipole limit, is investigated using two approaches to the linear
scaling diffusion Monte Carlo �DMC� technique. The first is a general purpose norm-conserving DMC �NC-
DMC� method wherein the number of walkers, N, remains strictly constant thereby avoiding the sudden death
or explosive growth of walker populations with an error that vanishes as O�N−1� in the absence of weights. As
NC-DMC satisfies detailed balance, a phase space can be defined that permits both an exact trajectory weight-
ing and a fast mean-field trajectory weighting technique to be constructed which can eliminate or reduce the
population bias, respectively. The second is a many-body diagrammatic expansion for trial wave functions in
systems dominated by strong on-site harmonic coupling and a dense matrix of bilinear coupling constants such
as the QDO in the dipole limit; an approximate trial function is introduced to treat two-body interactions
outside the dipole limit. Using these approaches, high accuracy is achieved in studies of the fcc-solid phase of
the highly polarizable atom, xenon, within the QDO model. It is found that 200 walkers suffice to generate
converged results for systems as large as 500 atoms. The quality of QDO predictions compared to experiment
and the ability to generate these predictions efficiently demonstrate the feasibility of employing the QDO
approach to model long-range forces.
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I. INTRODUCTION

One of the important early applications of quantum me-
chanics to explain fundamental phenomena was the theoret-
ical demonstration that the interaction between fluctuating
dipoles on two rare-gas atoms leads to the experimentally
observed temperature-independent attraction which de-
creases as 1 /R6 at large separation R �Refs. 1 and 2� and
does not arise in the classical limit. This interaction, which is
referred to as the pair London force or induced dipole-
induced dipole pair dispersion, is usually weaker than other
forms of attraction, e.g., those due to permanent charges,
dipoles, or quadrupoles, and at short distances, covalent or
metallic bonding. Nonetheless, dispersion interactions need
to be incorporated realistically if an accurate description of
biological, chemical, and physical systems is desired. For
instance, if surface tensions are improperly modeled through
the neglect of many-body dispersion effects,3,4 the equilibria
associated with the hydrophobic association of biological
nanostructures5 will be shifted.

Incorporating many-body dispersion interactions in both
empirical force-field as well as density-functional theory
�DFT�-based molecular simulations has proven to be a chal-
lenging task. Many-body dispersion interactions in

condensed-matter systems are generally modeled by fitting
effective pair potential parameters which are optimized to
best reflect bulk behavior. However, effective two-body po-
tentials are flawed near surfaces and interfaces leading to
errors in the predictions of hydrophobic effects as described
above. The leading-order many-body dispersion interaction
term is the three-body triple dipole Axilrod-Teller-Muto
potential6 which is not taken into account in standard bio-
physical force fields.7 Approximate functionals for DFT that
include dispersion are currently being developed but at
present are computationally intensive8 and cannot be applied
to large systems.

It has long been suggested that the quantum Drude oscil-
lator model �QDO� �Ref. 2� be employed to generate a high-
accuracy force field that can, in turn, be used to drive mo-
lecular simulations. The QDO is simply a model atom
wherein a single pseudoelectron is bound harmonically to a
single pseudonucleus. The QDO thereby naturally treats both
many-body dispersion and many-body polarization beyond
the dipole limit where the polarization response arises in sys-
tems possessing permanent electrostatic moments, and hence
a force field based on the QDO would contain intrinsically
all long-range interactions. Although the QDO is limited to
Gaussian response by construction, given the proper choice
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of free parameters, i.e., the charge q, mass m, and the stiff-
ness k of the spring binding a pseudoelectron to its pseudo-
nucleus, it is, for example, possible to accurately reproduce
the dipole polarizability given by q2 /k and the induced
dipole-induced dipole pair dispersion interaction which addi-
tionally depends upon the q /m ratio. More generally, the
three parameters q, k, or m can be selected to approximately
yield a variety of responses �beyond the dipole limit� via a
least-squares fit to values determined either from experiment
or high-level electronic structure theory. Other model param-
eters, such as short-range cutoff functions and short-range
repulsive terms, must be fit using more involved procedures.

Recently, it has been demonstrated that QDOs can be ap-
plied to study realistic condensed phase systems using a new
path-integral molecular dynamics �PIMD� technique9,10

which in principle gives an exact treatment of the QDO such
that the pseudonuclei move at finite temperature on the
ground-state Born-Oppenheimer surface provided by the
pseudoelectrons of the QDOs. However, PIMD calculations
of QDOs are computationally demanding because the large
energy-scale separation between the on-site or vacuum en-
ergy and the interpseudoatomic coupling terms as well as the
need to approach the ground state of the pseudoelectronic
degrees of freedom requires the use of large Trotter numbers.
Although work by the current authors is in progress to im-
prove the efficiency of the PIMD treatment of QDOs, it is
nonetheless useful to pursue alternative approaches such as
diffusion Monte Carlo �DMC� capable of generating high-
accuracy single-point �fixed atomic configuration� ground-
state energies useful in fully specifying the model �e.g., pa-
rametrizing short-range repulsions and cutoff functions�
through, for example, fits to the results of single-point high-
level all-electron computations of small systems.

The DMC method is commonly employed to generate
single-point ground-state energies accurately and efficiently.
However, the method depends on knowledge of a good ap-
proximation to the many-body ground-state wave function.
As the pseudoelectrons of QDOs are distinguishable par-
ticles, there is no need to antisymmetrize the wave function
which simplifies the problem. For distinguishable particles,
the wave function can be written as a product of an approxi-
mate single-particle trial wave function and a correction fac-
tor. In the frequently employed Jastrow trial wave
functions,11 the correction factor takes the functional form
exp�−�V�, where � is a variational parameter and V is a po-
tential energy. While Jastrow trial wave functions are simple
to implement and tend to increase trial function accuracy
substantially, they suffer from two disadvantages. First, the
term � needs to be determined numerically via a variational
Monte Carlo simulation, and second, a well-defined proce-
dure to systematically improve the wave function beyond
two-body interactions is not generally available. For the
QDO in the dipole limit, we demonstrate that it is possible to
overcome these shortcomings. Using diagrammatic tech-

niques, analytical expressions for Ṽ replacing the term �V in
the Jastrow trial function can be derived, which include pair
dispersion, three-body dispersion, etc. at each successive
higher-order diagram. This is accomplished by increasing the

complexity of Ṽ from a pair potential to a three-body poten-

tial, and so on �e.g., Ṽ= Ṽ�2�+ Ṽ�3�+. . .� at each order. In ad-
dition, we derive an alternative analytical expression for Ṽ�2�

which includes approximately all pair-wise induced
moment–induced moment interactions.

We, also, present a DMC method which enforces norm
conservation at every step without modulating the accep-
tance rule in time or introducing weights building on Refs.
12–14. Our norm-conserving DMC �NC-DMC� technique is
developed by considering the evolution of a fixed ensemble
of walkers and ensuring that the flux of walkers in and out of
the ensemble exactly matches for every instantaneous walker
configuration, a property that must be true as the number of
walkers in the ensemble goes to infinity. The NC-DMC
method is thus formally valid in the large walker limit, sat-
isfies detailed balance, is by construction stable to fluctua-
tions, and statistical averages can be converged to high ac-
curacy. The O�N−1� population bias can be removed by
weighting the trajectory both within mean field to lower the
magnitude of the O�N−1� error with no overhead and, ex-
actly, in principle, with extra computational overhead. The
error to be projected out by the weighting technique vanishes
as O�N−1� thereby enhancing the stability of weighting pro-
cedure which can be unstable without such improvements.12

Finally, QDOs challenge the decomposition of the DMC
propagator, limiting the imaginary-time step that can be em-
ployed to evolve the ensemble in time. A propagator, exact
for Gaussian trial functions but generally applicable, is there-
fore derived and presented. The NC-DMC method both with
and without the new propagator is tested on simple model
systems to demonstrate the ability of the technique to con-
vergence to the correct results in practice.

In order to demonstrate the feasibility of using the dia-
grammatic QDO trial function in conjunction with NC-DMC
method to generate high-accuracy single-point energies for
the development of high-accuracy force fields, we study the
face-centered cubic �fcc� xenon crystal at T=0. In the dipole
limit of the QDO model, comparisons are made to exact
results for the energy as a function of system size. The full
QDO model is then examined and the bulk modulus and total
energy are computed and compared to experiment.

II. METHODS

Here, the NC-DMC method is presented, first, followed
by a discussion of trial functions for the QDO model.

A. Norm-conserving diffusion Monte Carlo (NC-DMC)

DMC permits exact ground-state energies of many-body
quantum-mechanical systems to be computed as first pro-
posed by Fermi.15–20 DMC simulates the evolution of the
partial differential equation

��

��
= − �Ĥ − Ē�� ,

���� = exp�− ��Ĥ − Ē����0� = �
k

exp�− ��Ek − Ē��ck�k,

�1�

where Ĥ�k=Ek�k and ��0�=�kck�k. In the large � regime,
��E1−E0��1, the asymptotic solution, ���0, emerges �i.e.,
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provided c0�0� and with the choice Ē=E0 the evolution
conserves the “norm,” �d3r��r ,�+����d3r��r ,��. For
bosons and distinguishable particles �0 is nodeless. Thus,
DMC possesses a stationary large 	� or long “imaginary-
time” solution. Here we have written the norm conservation
equation for a single particle in three-dimensional space for
the sake of clarity. The formalism is identical for other par-
ticle numbers and dimensions.

In practice, the Hermitian operator Ĥ is decomposed into

a sum of Hermitian operators Ĥ=�i=1
ns ĥi, and a Hermitian,

approximate evolution operator is constructed. Using ns=2
yields

���� = �	
k=1

P

e− �
2

ĥ1e−�ĥ2e− �
2

ĥ1
��0�

= exp�− ��Ĥ̃��� − E0����0�

= �
k

exp�− ��Ẽk��� − Ē��ck�k, �2�

where 	�=	� / P is the imaginary-time step and Ĥ̃���= Ĥ
+O��2� is a Hermitian operator with ground-state eigenvalue

Ẽ0���=E0+O��2� and eigenstate �̃0���=�0+O��2� as is eas-
ily proved using the Baker-Campbell-Haussdorf formula.21

With the choice Ē= Ẽ0���, the approximate evolution is norm
conserving in the asymptotic regime. However, an appropri-
ately small 	� must be selected and/or extrapolations to the
	�→0 limit made to generate the desired result. For the

usual case, Ĥ= T̂+ V̂− Ē, we take ĥ1=T and ĥ2= V̂− Ē to sim-
plify the further development given below.

In order to simulate Eq. �2� to its steady state, an initial
wave function is represented by an ensemble of N “walkers,”
each occurring with probability ��r ;0�dr as we restrict the
discussion to bosons and distinguishable particles.16–20 Con-

sider the typical case Ĥ= T̂+ V̂− Ē. The evolution of the en-
semble by the exponential on the kinetic operator is analo-
gous to the time evolution of a diffusion equation with
diffusion coefficient, D=	 /2m. The normalized potential op-

erator V− Ē is analogous to a differential survival operator in
biology: increasing or decreasing the local density according
to the local potential while conserving the norm of the total
density. The diffusion, branching/annihilation, diffusion,
time evolution or “diffusion” Monte Carlo random walk gen-
erates a distribution of walkers representative of the ground-
state wave function in the long imaginary-time limit as dem-
onstrated above in the imaginary-time step, 	�, approaches
zero limit. For systems consisting of identical particles �un-
like the QDO�, the Bose-ground state is generated and �0 is
nodeless unless special measures are taken to project this
solution out.16–20 For systems with hard walls �e.g., V→
 in
a region of space as opposed to a point of measure zero�, it is
possible to derive more complex approximations to
propagators16–20 for which the diffusion move satisfies the
boundary conditions. Lacking improved propagators, very
slow convergence with 	� is observed. �When employing
propagators that generate boundary-condition violations, it is

useful to take ĥ2=T and ĥ1= V̂− Ē.� Singularities associated
with undamped attractive Coulomb potentials can also be
overcome with improved propagators.

Although it is possible to simulate Eq. �1� and achieve
well-converged ground-state energies, it is more efficient to
introduce a trial wave function �T, which is a good approxi-
mation to �0, and write a differential equation for the product

f���=�����T. For the usual case Ĥ= T̂+ V̂,

� f

��
= − �T̂ + V̂eff + D̂�f = − Ôf ,

f��� = �T�
k

exp�− ��Ek − Ē��ck�k, �3�

where

V̂eff =
�Ĥ − Ē��T

�T
,

D̂f =
	2

m
� �f � log �T� . �4�

Taking Ē=E0, the distribution f���→�0�T in the large 	�
limit and the evolution conserves the norm �d3rf�r ,��
��d3rf�r ,�+�� which again demonstrates the existence of a
stationary long imaginary-time solution. The discussion re-
mains limited to bosons and distinguishable particles �and
fixed node fermion simulations�. This approach is often re-
ferred to as DMC with importance sampling. The more basic
approach is recovered by setting �T=1.

In the limit that �T is a good approximation to �0, the

operator V̂eff approaches zero thereby improving short
imaginary-time approximations to the evolution operator and
reducing the number of iterations required to reach the

asymptotic regime. However, Ô is not a Hermitian operator
complicating the analysis of the approximate evolution. In
that, it shall be assumed that any appropriate splitting gener-
ates the solution

f��� = �̃T����
k

exp�− ��Ẽk��� − Ē��ck�̃k��� �5�

as above and that selecting Ē= Ẽ0��� leads to a stationary

large � solution. The usual choice of splitting is Ô= ô1+ ô2,

where ô1= T̂+ D̂ and ô2= V̂eff. It is easy to show that non-
Hermitian evolution operator exp�−�ô1�, referred to as the
drift-diffusion evolution operator, preserves exp�−�ô1��T

2

=�T
2. However, exp�−�ô1� also preserves the norm of an ar-

bitrary f given f and �T are well behaved at the boundaries
as can be demonstrated via an integration by parts at each
order of � in a Taylor expansion of the operator acting on f .
Given drift-diffusion evolution preserves the norm of the
steady-state solution; if the overall approximate evolution is
to preserve the norm of the steady-state solution, then the
branch evolution must also preserve the norm, i.e., for the
ground state, the expected number of “births” per walker,
�n�+��, should match the expected number of “deaths” per
walker, �n�−��, as is defined in the following:
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 dr exp�− �Veff�r�� f̄�r� = dr f̄�r� ,

 dr�exp�− �Veff�r�� − 1� f̄�r� = 0,

 dr�1 − exp�− �Veff�r�����+��Veff�r�� f̄�r�

= dr�exp�− �Veff�r�� − 1���−��Veff�r�� f̄�r� ,

�n�−�� f̄ = �n�+�� f̄ . �6�

Here, f̄�r� represents the action of exp�−�ô1� on the steady-

state solution, f�r�= �̃T�r ;���̃0�r ;��, ��+��x�=1;x�0 and 0
otherwise, while ��−��x�=1;x0 and 0 otherwise. The de-

sired condition simply states that the flux into exp�−�ô2� f̄ ,

�n�+�� f̄, must be balanced by the flux out of exp�−�ô2� f̄ ,
�n�−�� f̄. Given that the flux-matching condition needs only

hold for the steady-state solution, it is clear that a unique Ē
that satisfies Eq. �6� can be found which supports the exis-
tence of the assumed Eq. �5� and the corresponding station-
ary solution.

Some basic considerations are now given. A valid Monte
Carlo method need only preserve the stationary solution �as-
suming ergodic moves�. In the Appendix A 1, a discussion of
the application of exp�−�ô1� for the Gaussian-dominated �T
of interest in this paper is given. Finally, the “flux in” is
equal to the “flux out” only on average. Therefore, for a
finite walker population, the number of walkers in a DMC
simulation will fluctuate in time �e.g., unless �T��0�.

The foregoing analysis of the stationary solution of the
split operator DMC method gives insight into construction of
a norm-conserving or constant N, DMC or NC-DMC
method. Consider an ensemble of N walkers ��r1 . . .rN�=r��
�each one for the sake of clarity consisting of a single par-
ticle moving in three spatial dimensions� selected with prob-
ability 	i f�ri ;0�d3ri. Application of the norm-conserving
drift-diffusion term to each ensemble member is straightfor-
ward and standard as described in Refs. 16–20 and in Ap-
pendix A 1 as the N-walker system is separable for this op-
erator. In light of the discussion in the previous paragraph, it
is natural to consider the entire ensemble in developing a
method to apply the branch evolution, exp�−�ô2�. As de-
scribed above, flux matching �n�−�� f̄ = �n�+�� f̄ is true on aver-
age but not instantaneously n�−��r��n�+��r�. It is natural to
replace the average by a sum over walkers, however,
�1 /N��in

�+��ri�� �1 /N��in
�−��ri� unless N→
.

It is therefore proposed to enforce norm conservation at
each branching step, by enforcing flux balance for the instan-
taneous N-walker configuration, through a modification to
the acceptance rule in the spirit of Refs. 12–14. This is ac-
complished by defining

n̄����r�� =
1

N
�

i

n����ri� ,

w����r�� =
n̄�+��r�� + n̄�−��r��

2n̄����r��
, �7�

and taking

P����i;r�� = w����r��n����ri� , �8�

where P����i ;r��dr� is probability walker and i contributes to
the flux into/out of the new ensemble �e.g., the action of the
branch operator�. The modification creates the “flux-
matching branch operator” for each walker

�r��exp�− �ô2��r�� � �w�+��r��n�+��ri�

− Min�w�−��r��n�−��ri�,1� + 1� �9�

defined for N�1 which when summed over i=1,N yields
unity by definition. In more detail, a self-consistent compu-
tation is required,

w�−��r��n̄�−��r�� =
1

N
�

i

Min�w�−��r��n�−��ri�,1� ,

w�−��r�� =
w�−��r��n̄�−��r��

4w�−��r��n̄�−��r�� − 2n̄�+��r��
� 0, �10�

to ensure the ensemble branch operator is positive definite
w�−��r��n�−��ri��1; in practice, self-consistent cycles can be
avoided as will be discussed in the AppendixA. The selection

of the parameter Ē is discussed below. The quantity w����r��
approaches unity as N→
 and the branch operator properly
reduces to the original form. However, the N-dimensional
potential defined by taking the negative logarithm of Eq. �9�
has a discontinuous first derivative when a walker’s energy

changes from Ē+� to Ē−� because w�−��r���w�+��r�� for fi-
nite N. This difficulty can be easily overcome by introducing
a smooth switching function on a length scale on the order of

the standard deviation of V̄eff�r��= �1 /N��iVeff�ri� that acts to

exclude walkers with energies near Ē from scaling by the
weights and vanishes as 1 /�N. At present, this additional
improvement has not proved to be necessary. Our approach
is not equivalent to that of Ref. 12–14.

The NC-DMC method strictly conserves the number of
walkers in the ensemble and hence ensures the stability of

the simulation for any reasonable choice of Ē. Thus, neither
a rare fluctuation far away from flux matching nor a small

deviation, Ē= Ẽ0���+�, can cause the walker population to
grow or shrink by an unacceptably large amount as in the
original method. Unlike standard DMC, the NC-DMC accep-
tance rule does not modulate in time and NC-DMC strictly
satisfies detailed balance. Therefore, statistical averages can
be converged to high accuracy and the O�N−1� bias can be
removed12–14 as described below. In the Appendix A 2, de-
tails of the branching process are given along with prescrip-
tions �i� to check for the correctness of the simulation results,
�ii� to treat configurations of measure zero wherein the en-
semble branch operator becomes undefined or nearly so �e.g.,
requiring self-consistent cycles�, and �iii� to treat systems
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where boundary-condition violations �n�−��ri��1 for any i�
cannot be avoided �whence the above definitions of ô1 and ô2
should be reversed�.

The NC-DMC method has a bias that leads to O�N−1�
error as in standard DMC with its time varying acceptance
rule. However, under NC-DMC it is possible to correct for
the bias by defining appropriate weights in the usual way. We
begin by rewriting the ensemble branch operator

�r��exp�− �ô2��r�� = exp�− �Veff�ri��

�exp�log�1 + �w�+��r�� − 1�n�+,†��ri�

− �w�−��r�� − 1�n�−,†��ri��� , �11�

where the minimum condition was removed for simplicity
and

n��,†��ri� = e�Veff�ri�n����ri� . �12�

The weighting factor for each walker is then

W�corr��ri,r� ;�� = exp�− log�1 + �w�+��r�� − 1�n�+,†��ri�

− �w�−��r�� − 1�n�−,†��ri��� . �13�

Accumulating the weights for imaginary projection time,
L	�, requires NL extra storage and communication �for par-
allel computations� and in principle, removes all population
biases for sufficiently large L. It is also possible to define a
mean-field correction that provides a weight for the entire
ensemble and thus introduces extra storage of size L and no
additional communication overhead

W�corr,mf��r� ;�� = exp�−
1

N
�

i

log�1 + �w�+��r�� − 1�n�+,†��ri�

− �w�−��r�� − 1�n�−,†��ri��� . �14�

The mean-field weight distinguishes “good collections” of
size N from “better collections” of size N thereby correcting
approximately for the effect of the strict norm constraint.

Under NC-DMC, the parameter, Ē, can naturally be de-
termined so the average of the correction in mean field is
zero. Assuming the simulation is performed using a good

estimate Ē= Ētrue+�,

Ētrue = Ē −
�log�W�corr,mf��r� ;����

� d log�W�corr,mf��r� ;���

dĒ
� + O��2� , �15�

where the average is not corrected. This result reduces to the
standard condition

Ētrue = Ē +
�n̄�−� − n̄�+��

��n̄�+� − n̄�−� + 1�
+ O��2�

= Ē +
�n̄�−� − n̄�+��

�
+ O��2� �16�

as N→
. The derivatives required in Eq. �15� can be com-
puted simply and efficiently as only parameter differentiation
of relatively simple functions is required �e.g., the procedure

does not require derivatives of H�T /�T of any kind�. Note
that computations can be performed with reasonably opti-

mized but imperfect Ē because errors are accounted for by
the corrections.

It is well known that statistical averages of exponentiated
potential-like terms over nontrivial distributions do not con-
verge if the terms are large. Hence, there is an extensive
literature devoted to enhanced sampling techniques such as
the weighted histogram method and umbrella sampling
which help to overcome these difficulties.22 This work and
that of Refs. 12–14 are in part attempts to approach this
general problem as it arises in DMC. Here, as magnitude of
error correction scales favorably with walker number, van-
ishing as N−1, a stable weighting technique results.12–14 Al-
though in the following, we shall not apply the weighting
procedure, the effect of the mean-field correction is exam-
ined in the AppendixA. The number of walkers required to
obtain a given accuracy is reduced by a factor of �4 for the
model studied.

B. Quantum Drude model

As mentioned in Sec. I, we consider a pseudoelectron
with charge −q and mass m pinned via a harmonic spring of
stiffness k to its pseudonuclei which is the assigned charge
�Q+q�, where Q is the permanent charge �here, we take Q
�0�. Denoting the � component of the charge’s position by
r� �e.g., r1=x ,r2=y ,r3=z� and that of the pseudonucleus by
R�, the unperturbed Hamiltonian h0 becomes

h0 = −
	2

2m
��

2 +
k

2
�r� − R��2, �17�

where the summation convention over Cartesian coordinates
labeled with Greek indices is implied and where ��=� /�r�.
Defining �0=�k /m, the ground-state eigenenergy of un-
coupled system or the “vacuum” energy is

E0 =
3M

2
	�0, �18�

with ground-state wave function

�0 = 	
i=1

M

�0i,

�0i = �m�0

�	
�1/4

exp�−
m�0�ri� − Ri��2

2	
� , �19�

for an M QDO system in three spatial dimensions. For the
full Drude oscillator model the intermolecular coupling is
simply the Coulomb interaction between all charges in the
system �e.g., the intramolecular or on-site interaction is har-
monic�. The QDO model, thus, has all the long-range re-
sponses of a full electronic system, but due to its simple
Gaussian response, the QDO cannot describe short-range in-
teractions adequately �e.g., when pseudonuclear separations
approach the covalent or van der Waals radius�. Hence, suit-
able cutoff functions are introduced at short distances9,10

which for clarity will be eliminated from the discussion be-
low.
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1. QDO model in the two-body dipole limit

In order to make progress defining approximate trial wave
functions, it is useful to change to variables appropriate for
the dipole limit.2 After discussing the dipole limit of the
QDO in detail, we shall return to the notation of Eq. �17�.
Now, introducing the � component of the instantaneous di-

pole moment as ��=q�r�−R�� and defining �̄�=�� /q and
m̄=m /q2, the on-site Hamiltonian can be re-expressed as

h0,i = −
	2

2m̄
�̄i�

2 +
m̄�0

2

2
�i�

2 , �20�

where �=q2 /k is the dipole polarizability of the QDO
model.2 This change of variables does not alter the form of
the vacuum energy but does trivially modify the form of the
unperturbed wave function

�0i = � m̄�0

�	
�1/4

exp�−
�m̄�0��i� − Ri���2

2	
� . �21�

In the ideal dipole limit, the interaction v� between the two
dipoles can be written as

v12� = − �1�T���R12��2�, �22�

where the vector R12 connects dipoles 1 and 2 and where
T���R� is defined as

T���R� =
1

R5 �3R�R� − R2���� . �23�

Next, we consider two interacting Drude oscillators. The
two-body Hamiltonian H2 can thus be written as

H2 = �
i=1

2

h0i + v12� �24�

and diagonalized exactly because it is quadratic. This can be
achieved with a �unitary� transformation on the variables �̃�,

�̃�
� =

1
�2

��1� � �2�� , �25�

which leaves the form of the on-site Hamiltonian h0,i in Eq.
�20� invariant, but changes v� to

v�� = � �̃�
�T���̃�

�. �26�

Because we are dealing with point atoms, we can proceed by
using an arbitrary director for the vector R12, e.g., by choos-
ing R12= �0,0 ,R�. As we have now broken the tensor prop-
erties of the T-interaction matrix, we denote the x, y, and z
components explicitly, i.e., Txx=Tyy =−1 /R3 and Tzz=2 /R3.

H2 is now the sum of two Hamiltonians h̃� each consisting

of three independent summands h̃xx
� = h̃yy

� and h̃zz
�, given by

the expressions

h̃xx
� = −

	2

2m̄
�̄�,xx

2 + � m̄�0
2

2
�

�

R3��̃�,xx
2 , �27a�

h̃zz
� = −

	2

2m̄
�̄�,zz

2 + � m̄�0
2

2
�

2�

R3 ��̃�,zz
2 . �27b�

The ground-state energy of two interacting dipoles Ẽ0 is2

E0 =
	�0

2
�2�1 �

�

R3 +�1 �
2�

R3 � . �28�

In order to calculate the net interaction energy between the
two atoms V, we need to subtract the ground-state energy of

two noninteracting dipoles, i.e., V= Ẽ0−E0. Taylor expansion
of the square root with respect to a small parameter ��1+�
�1+� /2−�2 /8� yields2

V � −
3�2

4R6 . �29�

It is now instructive to analyze the ground-state wave func-
tion � for two interacting dipoles. With the definition of
�xx

+ =��1+� /R3, the wave function associated with the co-
ordinate �̃xx

+ is given by

�̃xx
+ = � m̄�xx

+

�	
�1/4

exp�−
m̄�xx

+ �̃+,xx
2

2	

 , �30a�

�M exp�−
m̄�� + ��xx

+ ��̃+,xx
2

2	

 , �30b�

where M is a normalization factor that does not depend on
�̃+,xx

2 and ��xx
+ =� /R3. Similar definitions and statements can

be made for the other eigencoordinates so that the two-dipole
wave function can be written as

���0 exp�−
m̄��

2	R3����̃xx
��2 � ��̃yy

� �2 � 2��̃zz
��2�
 .

�31�

Applying the inverse transformation to that described in Eq.
�25� yields

���0 exp�−
v�

2	�0

 . �32�

The interesting aspect about this last equation is that to lead-
ing order. The exact wave function can be written as the
product of the single-dipole wave function, �0, times a Ja-
strow factor exp�−�v�� �Ref. 11� for which � is simply given
by 1 / �2	�0�.

2. Constructing higher-order trial wave functions in the
dipole limit

For a given set of M pseudonuclei coordinates, it is pos-
sible to diagonalize the M-dipole Hamiltonian HM,

HM = �
i=1

M

h0i +
1

2�
i,j

M

v��Rij� , �33�

numerically exactly within a time that scales with M3. Of
course, it would be desirable to have accurate estimates for
the wave function in the ideal-dipole limit that can be ob-
tained with more favorable scaling. Summing the dipole-
dipole interaction over the system can be achieved as a linear
operation in M �times log M� operations using fast Ewald

JONES et al. PHYSICAL REVIEW B 79, 144119 �2009�

144119-6



summation, for example, and hence Jastrow factors such as
exp�−�v�� present no difficulties in DMC simulations.

The starting point of our treatment is to write the dipoles
of all particles, which we assume to be identical for the sake
of simplicity, into one vector � with 3M components. This
does not alter the form of the Hamiltonian HM,

HM = −
	2

2m̄

�2

���
2 +

1

2
m�0

2��
2 −

1

2
��T����, �34�

where T�� has become a symmetric 3M�3M matrix. As in
Sec. II B 1, one can diagonalize T �in principle� with a uni-

tary transformation S to T̃��=S��T��S��. The eigenvectors
are then �̃�=S���� because the transposed S is the inverse
transformation matrix, i.e., S��S��=���. All masses m and
unperturbed frequencies �0 remain invariant under a trans-
formation with S as long as all m and all �0 are all identical,
respectively. If m and �0 were atom dependent, then it would
be necessary to define effective dipoles �̄i=�i /�m̃, which
would diagonalize the kinetic energy. Moreover, part of the
on-site potential-energy interaction would have to be trans-
ferred to the T matrix such that all on-site Hamiltonians be-
come identical. This would then make the Hamiltonian for-
mally identical with that in Eq. �34� and the same
diagonalization techniques as those outlined further below
could be applied.

Because the Hamiltonian is now diagonal in its 3M de-
grees of freedom, it can be written as

H = �
i

h0i −
1

2�
i

T̃i�̃i
2 �35a�

=�
i=1

3M

−
	2

2m̄
�̄i

2 + m̄�0
2�i

2 − Ti�i
2, �35b�

where we have changed to roman indices to indicate that the
summation convention is no longer implied. The exact wave
function can now be written as

� =
1

M	
i=1

M

exp�−
m̄��0

2 − T̃i/m̄�̃i
2

2	

 , �36�

where M is again a normalization factor. The argument of
the exponential can be expanded into a Taylor series, e.g.,

�i = �0�1 −
T̃i

2m̄�0
2 +

1

8
� T̃i

m̄�0
2�2

+ . . .� , �37�

with �i=�0
�1− T̃i / m̄�0

2. Thus, the �negative� argument in
the exponential can be approximated via

m�0

2	 ���� −
1

2m̄�0
2 T̃�� +

1

8�m̄�0
2�2 T̃��T̃����̃��̃�, �38�

where we have reverted to the summation convention. �T̃ is
yet a diagonal matrix.� Instead of evaluating Eq. �38� in the
basis of the “eigendipoles,” one may as well return to the
original representation and thus replace the individual terms
in Eq. �38� as follows:

����̃��̃� = S��S���̃��̃� = ��̃�S����S���̃�� = ����,

�39a�

T̃���̃��̃� = T̃�������������̃��̃�

= T̃����S���S����S���S�����̃��̃�

= S����T̃����S����S����̃�S����̃� = T̃�����̃���̃��,

�39b�

and likewise

T̃��T̃���̃��̃� = T��T������. �39c�

With this result, the trial wave function becomes

� = �0 exp�� − T��

2m̄�0
2 +

T��T��

8�m̄�0
2�2 + . . .�����
 . �40�

The different terms arising in Eq. �40� can be represented
graphically as done in Fig. 1. The terms involving �Tn� ,n
�1 can be computed in order �nM /2�log M by iteratively
evaluating �eff

�k+1�=T�eff
�k�, where �eff

�1�=�, and then computing
�eff

�k� ·�eff
�k� using fast Ewald techniques.

Consistent with the calculation of the wave function, the
net energy of the system E0 is generated by summing over all
frequencies of Eq. �37�, specifically

E0 =
1

2
	�0�

i
�1 −

T̃ii

2m̄�0
2 +

T̃i�T̃�i

8�m̄�0
2�2 + . . .� �41a�

=
1

2
	�0���� −

T̃��

2m̄�0
2 +

T̃��T̃��

8�m̄�0
2�2 + . . .� �41b�

=
1

2
	�0�3M −

Tr�T�
2m̄�0

2 +
Tr�T2�

8�m̄�0
2�2 + . . .� . �41c�

Here, we have used the same notation as before, that is, the
summation convention applies to Greek but not to Roman
indices. The expansion can be seen as the diagrammatic ex-
pansion of Fig. 2 which because of Gaussian statistics con-
tains only bubbles. The first correction term on the right hand
side of Eq. �41� disappears because dipole tensor T is trace-
less in any representation. Each successive term in the en-
ergy expansion involves pair interactions, three-body inter-
actions, four-body interactions, and so on.

FIG. 1. �Color online� Diagrams representing the leading con-
tributions in the exponent of the trial wave function �see Eq. �40��.
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3. Summary of the QDO model in the dipole limit

In the above discussion, a useful hierarchy of trial func-
tion has been derived, the on site only, the on-site-plus-all-
pair dipole, on-site-plus-all-pair-all-three-body dipole, and so
on. Although the trial functions beyond the on-site-only are
derived/presented in the dipole limit, it is simple matter to
change variables back to the Cartesian representation of the
full model and apply them to this more complex case. That
is, the dipole limit is the first term in a multipole expansion
of the full model and, thus, contributes an appreciable frac-
tion of the total energy of the full QDO system.

4. Trial wave functions for the pair interaction limit of the full
QDO model

Although the on-site-plus-all-pair dipole trial function has
considerable content and is easy to implement for use in
DMC simulations, higher-order-induced moment pair inter-
actions are important for highly polarizable atoms such as
xenon. It is therefore useful to develop a pair trial function
for the full model, on-site-plus-all-pair-multipole trial func-
tion. We begin by writing an un-normalized Jastrow wave-
function ansatz for two Drude oscillators

��2� = �	
i=1

2

exp�−
m�0ri

2

2	
�
exp�− Fdd�r12 + R12�

− FdN�r1 + R12� − FdN�r2 − R12�� , �42�

where ri is the pseudoelectron displacement from its pseudo-
nucleus Ri and R12=R1−R2 is the interpseudonuclear sepa-
ration. Following earlier work which has suggested using the
zero energy solution to Schrödinger’s equation as Jastrow
factors,17,18 we write

Ĥ��2� = 3	�0�
�2�,

Ĥ = T̂ +
m�0

2

2
�r1

2 + r2
2� +

q2

�R12�
+

q2

�r12 + R12�
−

q2

�r1 + R12�

−
q2

�r2 + R21�
. �43�

Keeping terms to first order in �0F which is valid because F
is small compared to �0 separates the problem into three
identical equations of the form

�	�0�r · �F = �	�0�r
�F

�r
=

q2

�r + R�
−

q2

�R�
, �44�

where R is assumed to line along the z axis. The solution is
simply

F�r + R� = − � q2

	�0
��R�−1 log��R� · �R + r� + R · �R + r�� ,

�45�

where we note that since

�2F = 0, �46�

the error is, in fact, of order O��	�0�0��F� ·�F���
�O��	�0�−2� and related to three-body correlations. Appro-
priate cutoff functions are introduced to avoid the singular
behavior that arises when �r+R��0 similar to those intro-
duced in the Coulomb potential itself as described above and
in Refs. 9 and 10 �but not shown here to increase the clarity
of the presentation�.

5. Full QDO model for the simulation of xenon

The quantum Drude model for xenon employed herein is
described in detail in Refs. 9 and 10. Briefly, in the gas-phase
two-body limit, a short-range pair pseudonucleus-
pseudonucleus repulsion is fit such that the QDO model re-
produces the high-accuracy gas-phase BWLSL xenon-xenon
pair potential of Ref. 23. The mass, charge, and frequency
�m ,q ,�0� of the model were chosen to yield the dipole po-
larizability, �, the induced-dipole-induced-dipole dispersion
coefficient, C6, and the induced-dipole-induced-quadrupole
+induced-quadrupole-induced-dipole dispersion coefficient,
C8, from Refs. 23 and 24. The parameters used to truncate
the Coulomb interactions of the model were selected rather
arbitrarily as the on site only trial function employed in Refs.
9 and 10 was not accurate enough to permit quantitative
parameter fitting to the experimentally measured properties
of the xenon crystal at T=0 �the results were of sufficient
quality to obtain agreement to within �10%�.

III. RESULTS

Here, the ability of the NC-DMC method and the trial
wave functions developed for use with the QDO model to
treat model and realistic systems is explored. The NC-DMC
technique is validated through studies of the one-dimensional
harmonic oscillator and then employed to study the realistic
QDO model of xenon. The QDO trial wave functions are
tested through NC-DMC and variational Monte Carlo
�VMC� studies of the xenon dimer and the fcc-xenon crystal,
where possible comparisons are made to analytical or experi-
mental results as applicable. The notation MXe will be used
to denote the number of xenon Drude oscillator atoms and N
the number of NC-DMC walkers below. Diffusion Monte
Carlo with rejection20 appropriate for use with the more
complex trial functions has not been implemented.

FIG. 2. �Color online� Diagrams representing the leading con-
tributions to the dipole-dipole interaction energy as in Eq. �41c�.
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A. NC-DMC studies of the one-dimensional harmonic
oscillator

In order to test the NC-DMC technique and the drift-
diffusion evolution operator of the AppendixA 1, the har-
monic oscillator is studied

Ĥ = T̂ +
m�2x̂2

2
,

E0 =
	�

2
,

�0 = �m�

�	
�1/4

exp�m�x2

2	
� ,

�T��� = �m��

�	
�1/4

exp�m��x2

2	
� ,

ET = ��T�Ĥ − E0��T� =
	��1 − ��2

4�
. �47�

Tests are performed using �=0 and �=0.9.
In Fig. 3, a NC-DMC study of the convergence of the

ground-state energy with imaginary-time step, Fig. 3 �top�,
and walker number, Fig. 3 �bottom�, is presented for the �
=0 trial function �no importance sampling�. The results con-
verge as �2 to the correct value �E0���−E0 is presented in the
figure�. Approximately 200 walkers are required to generate
converged results.

In Fig. 4, the same study is performed using the �=0.9
trial function both with and without the improved drift-
diffusion evolution operator. Again, appropriate convergence
behavior is observed with the improved drift-diffusion evo-
lution operator of Appendix A 1, exhibiting faster conver-
gence with �. Approximately 200 walkers seem to be re-
quired to generate accurate results.

B. Xenon dimer under the full QDO model

It is useful to evaluate the quality of the QDO trial func-
tions presented in Sec. II through tests on the most basic

system to which they can be applied, the xenon dimer. The
variational dimer energy as a function of nuclear separation,
ET�R�, is given for all trial wave functions described in the
text: the on site only trial function, the on-site-plus-dipole-
dipole trial function, and the on-site-plus-all-pair-multipole
model in Fig. 5. Results are compared to a high quality NC-
DMC simulation estimate of E0�R� �the correct results�. The
on-site-plus-all-pair-multipole wave function performs par-
ticularly well, predicting the well depth to within 10%.

Next, the convergence of the ground-state energy of the
xenon dimer at its minimum, E0�Rmin�, with imaginary-time
step and walker number is presented for the on-site-plus-all-
pair-multipole trial function under NC-DMC �see Fig. 6�.
The observed behavior is in accord with expectations �e.g.,
the convergence with N and � is uniform and has the appro-
priate power-law dependence given the method of Ref. 20
has not been implemented�.

C. Fcc-solid xenon under the dipole limit QDO model at T=0

Having demonstrated the stability and accuracy of the
techniques on small systems, it is natural to examine larger
systems for which high quality “exact” results can still be
obtained. The dipole limit QDO model for the perfect fcc-
xenon solid can be solved quasianalytically in reciprocal
space �a 6nsite�6nsite matrix constructed by appropriate
G-vector sums is diagonalized at each of the ncell

3 k points in
Brillouin zone where nsite=4 for the fcc lattice and ncell is the
number of fcc unit cells in the crystal of interest, as opposed
to diagonalizing a single 3MXe�3MXe matrix�. The results
of a NC-DMC study of the dipole limit QDO model of the
perfect fcc-xenon solid at the experimental lattice constant
performed using 	�=0.01 N=1000 and the on-site-plus-
dipole-dipole trial function are compared to the analytical
results as a function of system size, MXe, in Fig. 7. Although
the NC-DMC imaginary-time step must be decreased as
�MXe with increasing system size, the NC-DMC simulation
estimates of the ground-state energies match the analytical
answers within the error bars.

D. Fcc-solid xenon under the full QDO model at T=0

The results of Sec. III C suggest that the techniques are
capable of generating high quality results for the nontrivial
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FIG. 3. �Color online� �a� The convergence of the ground-state energy with imaginary-time step for the one-dimensional harmonic
oscillator computed using the NC-DMC method with �T=1 and N=1000 walkers. �b� The corresponding convergence of the ground-state
energy with walker number computed using an imaginary-time step of �	�=0.02.
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full QDO model of the fcc-xenon crystal where there are no
analytical answers with which to compare. Proceeding care-
fully, therefore, in Fig. 8, the convergence of the ground-
state energy with imaginary-time step for the full QDO
model MXe=32 atom xenon solid computed using the NC-
DMC method with the on-site-plus-all-pair-multipole trial
function and N=1000 walkers is given. Further computations
on the QDO model solid given below were performed using
	�=0.02 a.u. and N=1000 and an appropriate reduction of �
as �MXe with increasing system size.

The ground-state energy of the fcc-xenon solid as a func-
tion of system size, MXe, at the experimentally determined
lattice constant, aeq=6.12 Å, under the full model QDO is
presented in Fig. 9 along with the extrapolation of the results
to MXe→
 limit. The experimental T=0 binding energy is
E0�aeq�=−6.05 mHartree /atom �Ref. 23� while the present
full QDO predicts E0�aeq�=−6.27 mHartree /atom. The zero-
point energy is estimated to be 0.2 mHartree/atom �Ref. 25�
and hence the agreement is good. It is important to note that
the full model QDO is fit to reproduce the BWLSL pair
potential in the gas phase. The high-accuracy gas-phase pair
potential predicts a T=0 crystal binding energy of E0�aeq�=
−6.81 mHartree /atom. Thus, the full QDO model introduces
substantial many-body corrections in the condensed phase.

In Fig. 10�a�, the ground-state energy of the MXe=32
atom fcc-xenon solid as a function of lattice constant, E0�a�,
is presented along with the variational energy, ET�a�, of the
on-site-plus-all-pair-multipole trial function. It is clear that

ET�a� is not accurate enough to describe the solid well. Last,
the ground-state energy of the MXe=32 and MXe=256 atom
fcc-xenon solids as a function of lattice constant is presented
in Fig. 10�b�. The lattice constant predicted by the QDO
model is in very good agreement with experiment �aeq
=6.12 Å�. In contrast, the BWLSL gas-phase pair potential,
which is reproduced by the QDO model in the two-body
gas-phase limit, predicts aeq=6.04 Å. Nuclear quantum ef-
fects �see the Appendix A 3� are estimated to increase the
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FIG. 4. �Color online� �a� The convergence of the ground-state energy with imaginary-time step for the one-dimensional harmonic
oscillator computed using the NC-DMC method with �T=�0���� ;�=0.9;��0 and N=1000 walkers. �b� The corresponding convergence of
the ground-state energy with walker number computed using an imaginary-time step of �	�=0.1. �c� The convergence of the ground-state
energy with imaginary-time step for the one-dimensional harmonic oscillator computed using the NC-DMC method with �T=�0���� ;�
=0.9;�=0 and N=1000 walkers. �d� The corresponding convergence of the ground-state energy with walker number computed using an
imaginary-time step of �	�=0.002.
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FIG. 5. �Color online� The variational energy as a function of
nuclear separation ET�R� for the full QDO model xenon dimer is
presented for all trial wave functions described in the text. �From
top to bottom� The on-site-only trial function �plus sign�, the on-
site-plus-dipole-dipole trial function �x�, and the on-site-plus-all-
pair-multipole model �star�. Results are compared to a converged
NC-DMC study �box� of the dimer potential curve, E0�R�.
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lattice constant by 0.03 Å. The QDO prediction of the bulk
modulus for two system sizes, �=4.0�0.1 GPa for MXe
=32 atoms and �=4.2�0.2 GPa for MXe=256 atoms, are in
good agreement with each other and nuclear quantum effects
are estimated to decrease these values by 0.3 GPa. Thus, the
model prediction is within 3%–10% of the experimental
value, �=3.64 GPa. The BWLSL gas-phase pair potential
predicts a rather large modulus, �=4.55 GPa. Thus, the
QDO does capture the many-body terms that arise in con-
densed phase reasonably well. These accurate simulation re-
sults show the present QDO xenon model is somewhat
“stiff” in the solid phase although the lattice constant and the
binding energy are predicted reasonably. In general, the
QDO parameters need to be tuned to reflect the higher qual-
ity solid-state simulation data that can now be generated.

IV. SUMMARY AND CONCLUSIONS

In this paper, a NC-DMC technique is presented which
strictly conserves the number of walkers along the stochastic

trajectory without introducing weights. Corrections to the
O�N−1� population bias were presented. The method, NC-
DMC, is hence very stable and allows long runs to be per-
formed in complex systems even when the trial function is
not optimal and the imaginary-time step is taken to be large.
The technique requires only a small modification of an ex-
isting DMC code and could potentially be applied to study a
wide variety of problems. An improved propagator for the
diffusion-drift evolution operator that can be generally
implemented but is of particular interest for use with Gauss-
ian trial functions where it is exact is also presented. The
NC-DMC method was applied to study model and realistic
systems and demonstrated to be stable and accurate.

The QDO is an elegant model that could be used to form
the basis for next generation high-accuracy force fields as it
naturally generates all long-range responses, in particular
many-body polarization and dispersion. Using QDOs, the
force-field designer need only concentrate on fitting short-
range repulsive terms and cutoff functions designed to turn
off the long-range interactions at close internuclear separa-
tions. If accurate single-point energies of the QDO model
could be generated, these nontrivial QDO model parameters
could be fit to experimental data and/or high-level quantum
chemical computations of small systems, easily. Here, QDO
trial functions for use with NC-DMC simulation studies per-
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FIG. 6. �Color online� �a� The convergence of the ground-state energy with imaginary-time step for the full QDO model xenon dimer
computed using the NC-DMC method with the on-site-plus-all-pair-multipole trial function. �b� The corresponding convergence of the
ground-state energy with walker number computed using an imaginary-time step of 	�=0.02 a.u. The energy scale is on order 10 �Hartree,
stringently testing the method.

-7.6

-7.4

-7.2

-7.0

-6.8

-6.6

-6.4

2 3 4 5 6

E
(n

)/
m

H
ar

tr
ee

n

FIG. 7. �Color online� The convergence of the ground-state en-
ergy of the fcc-xenon solid at the equilibrium lattice constant as a
function of system size �n=ncell� under the dipole limit QDO model
computed using NC-DMC with the on-site-plus-dipole-dipole trial
function, N=1000 walkers, and a time step of 	�=0.01. Simulation
results �points� are compared to the analytical results �circles�. A fit
to the data is included �f�n�=E0−� /n3� along with the extrapolated
value of E0=−6.5055 mHartree /atom �top horizontal line�,
which is close to the large-N analytic result of E0=
−6.4996 mHartree /atom, calculated for N=32 000 �slightly lower
horizontal line�.
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the equilibrium lattice constant under the full QDO model com-
puted using NC-DMC with the on-site-plus-all-pair-multipole trial
function, with 32 atoms and N=1000 walkers.
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formed to generate high-accuracy single-point ground-state
energies are presented and then applied. It is found in studies
of the fcc-xenon solid at T=0 that the trial functions pre-
sented herein are capable of generating high-accuracy
ground-state energies for large system sizes when used in
NC-DMC simulations. The proposed trial functions are of
sufficiently high quality that the equilibrium lattice constant,
the binding energy, and the bulk modulus of the QDO model
fcc-xenon crystal at T=0 could be accurately determined.
This represents a significant success. However, the present
set of trial functions was not accurate enough to allow elastic
constants to be predicted within the available computing
budget. Current work involves employing correlated sam-
pling techniques26,27 and improved trial functions including
three-body terms to generate more accurate results more ef-
ficiently.
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APPENDIX: DIFFUSION, DRIFT, BRANCHING, AND
NUCLEAR QUANTUM EFFECTS

1. Diffusion and drift in DMC

As discussed in the text, a useful splitting of the non-
Hermitian evolution operator given in Eq. �3� requires the
application of exp�−��T̂+ D̂�� to the distribution function, f .
For arbitrary choice of �T, the propagator cannot be obtained
analytically. However, as we are interested in a small � ap-
proximation to the operator, it is possible to make progress.

First, basic exp�−�T̂� evolution leads to the

f�x;�� = � m

2�	2�
�1/2 dx� exp�−

m

2	2�
�x − x��2
 f�x�;0� ,

�A1�

where for simplicity we have restricted ourselves to one di-
mension and have assumed free space �open as opposed to

periodic boundaries�. As � goes to zero, the Gaussian ap-
proaches a delta function thereby restricting the convolution
to a small region of space about each point x. It is, therefore,
possible to consider introducing the Taylor expansion for
d log �T /dx to first order which yields

D̂f = �	2

m
� d

dx
� f�x��d log �T�x��

dx�
+ �x − x��

d2 log �T�x��
dx�2 �
 .

�A2�

The expression is exact if �T is Gaussian. The approximation
leads to the evolution �which is again exact for Gaussian �T�
following28

f�x;�� = dx�� m

2�	2�eff
�1��x��

�1/2

exp�−
m

2	2�eff
�1��x��

��x − x� −
	2�eff

�2��x��
m

d log �T�x��
dx�

�2
 f�x�;0� ,

�A3�

where

�eff
�1��x� = �S����x�� ,

�eff
�2��x� = �S� ���x�

2
� ,

��x� = �	2

m
�d2 log �T�x�

dx2 ,
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FIG. 9. �Color online� The convergence of the ground-state en-
ergy of the fcc-xenon solid as a function of system size �n=ncell� at
the equilibrium lattice constant under the full QDO model com-
puted using NC-DMC with the on-site-plus-all-pair-multipole trial
function �the points�, N=1000 walkers, and an imaginary-time step
of 	�=0.02 a.u.. A fit to the data is included �f�n�=E0−� /n3�
along with the extrapolated value of E0=−6.275 mHartree /atom
�top horizontal line�.
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FIG. 10. �Color online� �a� The ground-state energy of the
MXe=32 atom fcc-xenon solid as a function of lattice constant
E0�a� under the full QDO model computed using NC-DMC with
the on-site-plus-all-pair-multipole trial function �bottom curve�, N
=1000 walkers, and an imaginary-time step of 	�=0.02 a.u. com-
pared to the variational result of the on-site-plus-all-pair-multipole
trial function �top curve�. �b� The ground-state energy of fcc xenon
for MXe=32 atom �bottom curve� and MXe=256 atom �top curve�
cells solid as a function of lattice constant, E0�a�, under the full
QDO model computed using NC-DMC with the on-site-plus-all-
pair-multipole trial function, N=1000 walkers, and an imaginary-
time step of 	�=0.02 a.u.
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S��� = exp���
sinh���

�
, �A4�

and the propagator is not symmetric because the drift-
diffusion evolution operator is not Hermitian. The approxi-
mate evolution retains the norm-conserving property of the
full operator

 dxf�x;�� �  dx�f�x�;0� �A5�

and the �eff�x��0 for all ��x�. �See Ref. 20 for a discussion
of norm conservation in the presence of boundary-condition
violations�. If ��x� is taken to be zero, �eff

�1�=�eff
�2�=�, then the

commonly employed result is obtained.17–19 To the best of
our knowledge, Eq. �A3� has not appeared previously �e.g.,
in this form with nontrivial ��x��. The formula is valid for
periodic systems provided 	2� / �mL2��1, where L is the pe-
riodic box edge.

The above propagator can be applied to evolve a walker at
position x� selected with probability f�x� ;0�dx� to its new
position x in the ensemble f�x ;�� by sampling a Gaussian
random number  �x�� with standard deviation given
by !�x��= �	2�eff

�1��x�� /m�1/2 and taking x=x�+ �x��
+ �	2�eff

�2��x�� /m�d log �T�x�� /dx�. Appropriate cutoff func-
tions can be introduced on d log �T�x�� /dx� �Ref. 20� and on
��x�� if necessary.

In multidimensional systems, the proposed evolution re-
quires the computation of the second derivative matrix
�� log��T� along with a rotation to a frame in which the
matrix is diagonal. However, given that the DMC method
already requires the computation of �2 log��T�, it is a rea-
sonable approximation to take the second derivative matrix
to be diagonal �or take an isotropic average,
�1 /d����i�

2 log��T�, for each particle i in d spatial dimen-
sions to avoid inducing a bias through a particular choice of
Cartesian coordinate system orientation�. This simple ap-
proach is already an improvement on the usual approxima-
tion �� log��T��0. For the QDO, specifically, the on-site
term in �T is both Gaussian in form: constant and dominant.
It is, therefore, simple and straightforward to include a non-

zero ��x� in the diffusion-drift step. At present, we have only
included the constant on-site term in our computations be-
cause we have observed that once this contribution to ��x� is
introduced, the imaginary-time step in the DMC studies is
limited by the commutator between the branch and diffuse-
drift evolution operators. However, improvements to the
drift-diffusion propagator following the derivation given in
Sec. II B 2 are possible and/or the drift-diffusion propagator
can be applied in a multiple-time step fashion �n applications
of the drift-diffusion propagator with time imaginary step,
	� /2n, before applying the branch operator with imaginary-
time step, 	��.

It is useful to consider that performing a DMC simulation
without branching is equivalent to sampling �T

2 provided that
the propagator is boundary condition satisfying and � is

taken sufficiently small because although exp�−��T̂+ D̂�� pre-
serves �T

2 �e.g. H→HT such that E0→ �HT�T� /�T�, approxi-
mations are made in its application. Since it is possible to
sample �T

2 using standard Metropolis Monte Carlo proce-
dures, the efficacy of the approximations made in applying
the drift-diffusion evolution operator can be investigated by
performing an imaginary-time step convergence study of
DMC sans branching �the walker number dependence of the
DMC results is induced by the branch step only�. In this way,
measures can be taken to ensure that the imaginary-time step
of the full DMC computations is limited only by the com-
mutator between the branch and diffusion-drift terms. Addi-
tionally as described in Ref. 20, the errors in the drift-
diffusion propagator can be reduced using a Metropolis
Monte Carlo rejection sampling algorithm that imposes de-
tailed balance by employing the approximate propagator as
the a priori transition probability and �T

2 as the limiting dis-
tribution. This approach has not been implemented herein
but it can be employed with the improved drift-diffusion op-
erator above without loss of generality. A minor drawback of
Ref. 20 is that persistent or trapped configurations can occur
�e.g., diffusion-drift moves of trapped configurations are ac-
cepted with very low weight� which requires careful atten-
tion to details in the method’s implementation.

In Fig. 11�a�, the results of an imaginary-time step study
for the one-dimensional �1D� oscillator model presented in
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FIG. 11. �Color online� �a� The convergence of the variational energy with imaginary-time step both with and without the exact drift
���0: dash and ��0: cross�, for the one-dimensional harmonic oscillator computed using the DMC method without branching and �T

=�0���� ;�=0.9. �b� The convergence of the variational energy with imaginary-time step both with and without the exact drift ���0: dash
and ��0: cross� for the full QDO xenon dimer computing using the DMC method without branching and the on-site-plus-all-pair-multipole
trial function.
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Sec. III A under DMC with the branching step turned off are
given. When ��x� is taken to be nonzero,
the computations yield correct results ���T��H−E0���T�
=	��1−��2 / �4��=ET� independent of imaginary-time step
as is to be expected for a Gaussian model. With ��x��0, the
computations converge linearly with imaginary-time step to
the correct result. In Fig. 11�b�, a similar imaginary-time step
study is presented for the QDO xenon dimer with � taken to
be zero and taken equal to the on-site interaction value.
Again, taking ��0 increases significantly the imaginary-
time step at which convergence is obtained. However, both
choices of � converge to the result obtained from a standard
Metropolis sampling study.

In order to demonstrate the utility of the local harmonic
drift-diffusion propagator for systems in which the trial func-
tion is not predominantly Gaussian in character, we show
the results for the hydrogen atom ��T=exp�−r /a0�� within
the isotropic diagonal second derivative approximation
��=−2�	2 / �3mra0�� simulated in Cartesian coordinates, in
Fig. 12.

Finally, exact results for harmonic systems can be ob-
tained and used to aid in accessing the accuracy of the new
approach. The general expression

�x�exp�− �Ô��x�� � �x��T exp�− �Ĥ��T
−1�x�� �A6�

can be evaluated analytically for the special case H=T
+m�2x2 /2 and HT=T+m�2�2x2 /2 as described in Ref. 28

�x�exp�− �Ô��x�� = � m�

2	 sinh��	��
1/2

�exp�−
m�

2	
� 1

sinh��	��
�x − x��2

+ tanh� �	�
2

��x2 + x�2� + ��x2 − x�2�
� .

�A7�

The approximate propagator of the text can also be generated
analytically for harmonic systems

�x�exp�− �Ỗ�����x�� = �x�e−�ô1/2e−�ô2e−�ô1/2�x��

= �m�a��,�,��
2


1/2

�exp�−
m�

2	
�a��,�,���x − x��2

+ b��,�,���x2 + x�2� + ��x2 − x�2��� ,

�A8�

where

a��,�,�� = � �

sinh��	���

��1 + � �	��1 − �2�

2�
�tanh� �	��

2
�
−1

,

b��,�,�� = � tanh� �	��

2
� − 2a��,�,�� +

2�

sinh��	���
.

�A9�

Since the approximate expression has the same form as the
exact result, the finite � propagator can be mapped onto its
exact solution at arbitrary �= P� through the definition of
three effective parameters

�̃��� = � 2

�	
�sinh−1�� a��,�,��

2b��,�,��
1/2� ,

m̃��� = �m�a��,�,�,m�
�̃��� 
sinh��	�̃���� ,

�̃��� = � m��

m̃����̃���
� . �A10�

Here, only the � dependence of the effective parameters is
referenced explicitly. Finite imaginary-time-step-dependent
expressions for the DMC energy estimators discussed in
AppendixA 2 follow

Ẽ0��� =
	�̃���

2
,

ẼH��� =� Ĥ�T���
�T��� �

f̃���

=
	��

2
+�m�2�1 − �2�

2
x2�

f̃���

=
	�

2 �� + � �1 − �2��̃���

�1 + �̃�����
�
 , �A11�

where
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FIG. 12. �Color online� The convergence of VT=−�e2 /r��T
2

= �−e2 /a0� for the hydrogen atom, �T=exp�−r /a0�, with imaginary-
time step both with and without the isotropic diagonal approxima-
tion to the trial function second derivative matrix ��=
−2	2 / �3mra0�: dash and ��0: cross� computed using the DMC
method without branching in Cartesian coordinates.
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f̃�x;�� = � m̃����̃����1 + �̃����
2�

�1/2

�exp�−
m̃����̃����1 + �̃����

2
x2� . �A12�

The Ẽ0��� estimator exists when �→0 because the limits of
a�� ,� ,0�=1 /�	� and b�� ,� ,0�=�	� /2 are well defined. In
the limit �→1 both estimators properly yield the ground-
state energy E0=	� /2.

In Fig. 13�a�, the convergence of the NC-DMC method to
the exact finite imaginary-time step results is shown for both
a small and a large imaginary-time step. The convergence of
the mean-field correction to NC-DMC is compared to
straightforward NC-DMC at finite � in Fig. 13�b�. The cor-
rection allows about a factor of four reduction in the number
of walkers required to achieve a given accuracy. In general,
NC-DMC allows very high-accuracy results to be obtained
straightforwardly.

2. Branching and estimating the energy in NC-DMC

The NC-DMC branching operator for each walker

�r��exp�− �ô2��r�� = �w�+��r��n�+��ri�

− Min�w�−��r��n�−��ri�,1� + 1�
�A13�

can easily be applied to an ensemble of random walkers fol-
lowing earlier work.16–20 First, one computes n����ri�,
n̄����r��, and w����r�� from the ensemble. Second, for each
walker, ci=int�w�+��r��n�+��ri��+1 copies are included in the
new ensemble plus one more if frac�w�+��r��n�+��ri�� is greater
than a uniform random number. Here, the function int�a�
indicates the integer part of the real number a and the func-
tion frac�a� indicates the fractional part of a �e.g., if a=3.6,
then int�a�=3 and frac�a�=0.6�. Third, for each walker, one
copy is removed from the ensemble if frac�w�−��r��n�−��ri�� is
greater than a uniform random number. Although the flux

into/out of the ensemble have been forced to match, the ran-
dom selection process may result in Nnew�N. However, hav-
ing chosen new ensemble members with correct probability,
all members of the new ensemble possess the same weight,
1 /Nnew. Therefore, it is correct and consistent to remove/add
copies of randomly selected walkers in the new ensemble
until Nnew=N �e.g., walkers are copied with probability 1
−Nnew /N ;NnewN or deleted with probability 1
−N /Nnew;Nnew�N�. In the absence of a flux-matching ac-
ceptance rule, the pruning procedure, Nnew→N would intro-
duce bias as N would be required to fluctuate.

The ground-state energy can be estimated in two ways
from a DMC simulation.17–19 First, using the properties of a
Hermitian operator

 drf�r�
Ĥ�T�r�
�T�r�

= dr�T�r�Ĥ�0�r� = E0. �A14�

Hence, an estimator for E0 is simply

E0
�est,H��r� ;�� =

1

N
�

i

Ĥ�T�ri�
�T�ri�

, �A15�

which is then averaged over the stochastic DMC process or

DMC “trajectory” to yield an estimate for Ẽ0��� �it has been
assumed that the steady state is of the form f���=�T�0����.
The second estimator is constructed using the fact that �n̄�−�

− n̄�+��=0 should be zero if Ē= Ẽ0��� and N→
 as described
in the text

E0
�est,���r� ;�� = Ē +

n̄�−��r�� − n̄�+��r��
�

. �A16�

Typically, �E0
�est,H�� has lower variance but if �E0

�est,H�� does
not closely agree with �E0

�est,���, the simulation should be re-
run with a smaller time step 	�. As N increases �E0

�est,���
come into agreement with the Ētrue of Eq. �15�. If the en-
semble average in Eq. �15� is not small, the computation

should be rerun with an improved estimate of Ē. The two
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FIG. 13. �Color online� �a� The convergence of the ground-state energy as a function of walker number for the one-dimensional harmonic
oscillator computed using the NC-DMC method with �T=�0���� ;�=0.9;��0 at two imaginary-time steps: �	�=0.6 �dash� and �	�

=0.06 �cross�. Convergence is presented relative the exact finite imaginary-time step results ẼH�0.6 /	��−	� /2=1.576	�10−4	� and

ẼH�0.06 /	��−	� /2=1.642�10−6	�, respectively. �b� The improvement wrought by mean-field trajectory weighting procedure at
imaginary-time step �	�=0.06. The crosses are generated using the mean-field trajectory weighting correction while the x’s are generated
using NC-DMC.
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above estimators, Eqs. �A15� and �A16� can be employed
within the weighting technique�s� of the text to improve re-
duce the number of walkers required to reach a given accu-
racy.

It is important to select a good value of Ē. A useful pro-

cedure is to start Ē equal to the variational energy, Ev

=�dr�T�r�Ĥ�T�r�, run NC-DMC for a few hundred steps,
refine the quantities using Eq. �15�, and so on until reason-
able convergence is achieved. A long run may then be

spawned with Ē fixed. The simulations are stable indepen-

dent of Ē and the quality of a NC-DMC simulation can be
assessed as described above. Again, the errors are absorbed
into the corrections but decreasing the magnitude of the cor-
rections increases the stability of the weighting procedure.
Computing one-dimensional distribution such as P�n̄�+��,
P�n̄�−��, and P�n̄�−�− n̄�+�� can also help judge the quality of
the simulations. From the central limit theorem, as N→
,
P�n̄���� approaches a Gaussian characterized by mean
!�2 /� and standard deviation !���−2�Nc / ��N� and
P�n̄�−�− n̄�+�� approaches a Gaussian characterized by zero
mean and standard deviation !�Nc /N, where Nc is a walker
correlation number. If the quantity, 1−exp�−�Veff�, itself ex-
hibits zero mean Gaussian statistics with standard deviation,
!, then Nc�1.

The NC-DMC method divides walkers into two popula-

tions at every step, those below Ē and those above, and
equalizes the flux out of the ensemble �arising from walkers

with energy above Ē� to the flux into the ensemble �arising

walkers with energy below Ē�. Thus, the NC-DMC method
can be become ill defined if all walkers have Veff�0 or
Veff0 for a given N-walker configuration. Making the rea-
sonable assumption that the probability of any walker having
a Veff of sign positive/negative is 0.5 for the correct choice of

Ē, the probability that N walkers all have the Veff with the
same sign is P�all���N�=21−N. For N as small as N=50,
P�all���50��2�10−15, while for N=20, P�all���20��2
�10−6. Thus, walker “sign collapse” is a rare event given
large enough N. Due to walker correlations, the effective
number of walkers is reduced, N→N /Nc, where Nc is a
walker correlation number. For sign-collapsed configura-
tions, we can simply choose to take all present walkers into
the next ensemble without prejudice �e.g., no flux in or out�.
This norm conversing choice is microscopically reversible
because a sign collapse state is history independent �depends
only on configuration�. It effectively takes 	i f�ri�=	i�T

2�ri�
for any sign-collapsed configuration which is, in fact, exact
for the case �T=�0 where Veff�0, all configurations are sign
collapsed �e.g., the sign of the number 0 is by convention
positive� and there is no flux n̄����0. The “accept all”
choice for the sign-collapsed configurations defines the N
=1 limit wherein NC-DMC samples f�r�=�T

2�r�. It also pre-
serves the variational character of the NC-DMC technique
and leads to the “ensemble flux-matching” branch operator
definition for each walker

�r��exp�− �ô2��r�� = ��w�+��r��n�+��ri�

− Min�w�−��r��n�−��ri�,1����r�� + 1� ,

��r�� = 1 − �	
i

��−��Veff�ri��� − �	
i

��+��Veff�ri��� ,

�A17�

where ��r��=0 for sign-collapsed configurations and ��r��
=1 otherwise. Similarly, configurations that are not sign col-
lapsed but for which the self-consistent equation for n̄�−��r��,
Eq. �10� would be required are also accepted without preju-
dice in the absence of boundary-condition violations. One
may also “accept all” if w����w�cut��100.

Walker sign collapse occurs for a vanishingly small frac-
tion of configurations given N�18 and �T��0. That is,
sign-collapsed configurations become points of measure zero
in the N-walker configuration space �e.g., r�� for N remark-
ably small. The NC-DMC method is not recommended for
use with N18 where sign-collapsed configurations contrib-
ute more than one part in 1�105 unless �T is a particularly
good estimate of �0. The “accept all” choice for sign-
collapsed configurations ensures the method preserves the
�T→�0 ;Veff→0 limit where n̄����0 leads to ambiguities in
the more naive NC-DMC acceptance rule and all configura-
tions are, by definition, sign collapsed. For the case �T��0,
the accept all condition makes the variationally consistent
choice 	i f�ri�=	i�T

2�ri� for a set of configurations which
rapidly approaches measure zero as N→
. It, also, neatly
defines the N=1 limit of the NC-DMC method to simply be
a variational computation with trial function, �T. If too many
sign-collapsed configurations are identified, the number of
walkers should be increased. Trajectory weighting either ap-
proximately in mean field or exactly, in principle, acts to
correct for sign collapse �among other errors�; for sign col-
lapse w����r���0, which is easy to insert in the correction
formalism. Again, the magnitude of the population bias van-
ishes as O�N−1�, stabilizing the weighting procedure.

For completeness, we consider systems in which the
diffusion-drift operator cannot be applied such that the
boundary conditions are satisfied. The definitions of ô1 and
ô2 of the main text should be reversed for this case. The
QDO Hamiltonian studied herein is sufficiently simple that
the drift-diffusion operator can be applied “properly.” In gen-
eral, any walker that violates the boundary conditions must
be rejected and its rejection probability n�−��ri� cannot be
scaled so that it is different from unity. If n̄�−� n̄�+� and the
self-consistency condition given in Eq. �10� has a solution,
the NC-DMC method needs no modification. When n̄�−�

 n̄�+�, the new self-consistency condition,

w�−��r��n̄�−��r�� = �
i

n�−��ri���+��n�−��ri� − 1�

+ w�−��r���
i

n�−��ri���−��1 − n�−��ri�� ,

w�−��r�� =
w�−��r��n̄�−��r��

4w�−��r��n̄�−��r�� − 2n̄�+��r��
� 0, �A18�

is imposed. For those rare N-walker configurations for which
self-consistent solutions do not exist, all walkers that violate
the boundary conditions are removed. The new ensemble of
size NnewN is then grown back to size N by randomly
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copying the remaining walkers with equal probability as de-
scribed in the first paragraph of this section. Again, these
fixes for configurations of measure zero are not history de-
pendent. The method of Ref. 20 can be implemented so as to
reject boundary condition violating moves at the drift/
diffusion step thereby obviating the above procedure and
permitting the definitions of ô1 and ô2 in the main text to be
employed.

3. Nuclear quantum effects

The relative importance of quantum effects due to the
nuclear motion of Lennard-Jones �LJ� atoms can be quanti-
fied with the de Boer parameter, "=h /!�m�, where m is the
mass of the LJ atom and ! and � are its LJ interaction radius
and energy, respectively.29 Properties of Lennard-Jonesium

in reduced units depend linearly on ", for example, its re-
duced density can be fitted to the equation #�=−1.0789"
−0.845", as ascertained from Table II in Ref. 30. Using
results for solid argon on the quantum effects in the lattice
constant and bulk modulus from the literature,31 we can use
this linear dependence on " to estimate the quantum effects
in xenon. The LJ parameters for argon used in Ref. 31 were
!=3.405 Å and �=120 kBK, while reasonable values for
the condensed phase of xenon are !=4.055 Å and �
=228 kBK, thus the ratio "Xe /"Ar=0.42. The relative differ-
ence in lattice constant and elastic constants of quantum ver-
sus classical for argon were reported to be 1.2% and −17%,
respectively. Given the ratio for " stated above, a 0.5% in-
crease in the classical limit lattice constant of xenon and a
7% decrease in the classical limit bulk modulus of xenon due
to quantum effects can be expected.
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